Nonnegative solutions for a class of radially symmetric nonpositone problems
نویسندگان
چکیده
منابع مشابه
On the existence of nonnegative solutions for a class of fractional boundary value problems
In this paper, we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation. By applying Kranoselskii`s fixed--point theorem in a cone, first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function. Then the Arzela--Ascoli theorem is used to take $C^1$ ...
متن کاملNon-negative Solutions for a Class of Radially Symmetric Non-positone Problems
We consider the existence of radially symmetric non-negative solutions for the boundary value problem -Au(x) = lf{u(x)) IMI < 1, x e RN{N > 2) u(x) = 0 ||*|| = 1 where X > 0, f(0) < 0 (non-positone), /' > 0 and / is superlinear. We establish existence of non-negative solutions for A small which extends some work of our previous paper on non-positone problems, where we considered the case N = \ ...
متن کاملRadially Symmetric Solutions for a Class ofCritical Exponent Elliptic Problems in RN
We give a method for obtaining radially symmetric solutions for the critical exponent problem ?u + a(x)u = u q + u 2 ?1 in R N u > 0 and R R N jruj 2 < 1 where, outside a ball centered at the origin, the non-negative function a is bounded from below by a positive constant ao > 0. We remark that, diierently from the literature, we do not require any conditions on a at innnity.
متن کاملon the existence of nonnegative solutions for a class of fractional boundary value problems
in this paper, we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation. by applying kranoselskii`s fixed--point theorem in a cone, first we prove the existence of solutions of an auxiliary bvp formulated by truncating the response function. then the arzela--ascoli theorem is used to take $c^1$ ...
متن کاملRadially-symmetric Problems of Nonlinear Viscoelasticity
Title of dissertation: ANALYSIS OF STEADY-STATE AND DYNAMICAL RADIALLY-SYMMETRIC PROBLEMS OF NONLINEAR VISCOELASTICITY Alexey B. Stepanov, Doctor of Philosophy, 2015 Dissertation directed by: Professor Stuart S. Antman Department of Mathematics This thesis treats radially symmetric steady states and radially symmetric motions of nonlinearly elastic and viscoelastic plates and shells subject to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1989
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1989-0949875-3